Application of the LEPS technique for Quantitative Precipitation Forecasting (QPF) in Southern Italy: a preliminary study
نویسندگان
چکیده
This paper reports preliminary results for a Limited area model Ensemble Prediction System (LEPS), based on RAMS (Regional Atmospheric Modelling System), for eight case studies of moderate-intense precipitation over Calabria, the southernmost tip of the Italian peninsula. LEPS aims to transfer the benefits of a probabilistic forecast from global to regional scales in countries where local orographic forcing is a key factor to force convection. To accomplish this task and to limit computational time in an operational implementation of LEPS, we perform a cluster analysis of ECMWF-EPS runs. Starting from the 51 members that form the ECMWF-EPS we generate five clusters. For each cluster a representative member is selected and used to provide initial and dynamic boundary conditions to RAMS, whose integrations generate LEPS. RAMS runs have 12-km horizontal resolution. To analyze the impact of enhanced horizontal resolution on quantitative precipitation forecasts, LEPS forecasts are compared to a full Brute Force (BF) ensemble. This ensemble is based on RAMS, has 36 km horizontal resolution and is generated by 51 members, nested in each ECMWF-EPS member. LEPS and BF results are compared subjectively and by objective scores. Subjective analysis is based on precipitation and probability maps of case studies whereas objective analysis is made by deterministic and probabilistic scores. Scores and maps are calculated by comparing ensemble precipitation forecasts against reports from the Calabria regional raingauge network. Results show that LEPS provided better rainfall predictions than BF for all case studies selected. This strongly suggests the importance of the enhanced horizontal resolution, compared to ensemble population, for Calabria for these cases. Correspondence to: S. Federico ([email protected]) To further explore the impact of local physiographic features on QPF (Quantitative Precipitation Forecasting), LEPS results are also compared with a 6-km horizontal resolution deterministic forecast. Due to local and mesoscale forcing, the high resolution forecast (Hi-Res) has better performance compared to the ensemble mean for rainfall thresholds larger than 10 mm but it tends to overestimate precipitation for lower amounts. This yields larger false alarms that have a detrimental effect on objective scores for lower thresholds. To exploit the advantages of a probabilistic forecast compared to a deterministic one, the relation between the ECMWF-EPS 700 hPa geopotential height spread and LEPS performance is analyzed. Results are promising even if additional studies are required.
منابع مشابه
The application of LEPS technique for Quantitative Precipitation Forecast (QPF) in Southern Italy
This paper reports preliminary results of a Limited area model Ensemble Prediction System (LEPS), based on RAMS, for eight case studies of moderate-intense precipitation over Calabria, the southernmost tip of the Italian peninsula. LEPS aims to transfer the benefits of a probabilistic forecast from global to regional scales in countries where local orographic forcing is a key factor to force co...
متن کاملFlood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملThe Soverato flood in Southern Italy: performance of global and limited-area ensemble forecasts
The predictability of the flood event affecting Soverato (Southern Italy) in September 2000 is investigated by considering three different configurations of ECMWF ensemble: the operational Ensemble Prediction System (EPS), the targeted EPS and a high-resolution version of EPS. For each configuration, three successive runs of ECMWF ensemble with the same verification time are grouped together so...
متن کاملPrecipitation Forecasting Using a Neural Network
A neural network, using input from the Eta Model and upper air soundings, has been developed for the probability of precipitation (PoP) and quantitative precipitation forecast (QPF) for the Dallas–Fort Worth, Texas, area. Forecasts from two years were verified against a network of 36 rain gauges. The resulting forecasts were remarkably sharp, with over 70% of the PoP forecasts being less than 5...
متن کاملQunatitative Precipitation Forecasting Using Cloud-based Techniques on Avhrr Data
Tri-yearly recurrence of flooding in Malaysia has made floods the most important significant natural disaster in the country in terms of cost and damage to property. Many hydrological and hydraulic flood models have been implemented but are yet to meet the requirement of a near real-time flood forecasting. This study envisage the “Nowcasting System” through the operational coupling of quantitat...
متن کامل